
Advanced Computer Graphics 
Ray-Tracing 

G. Zachmann 
University of Bremen, Germany 
cgvr.informatik.uni-bremen.de 



G. Zachmann 2 Ray Tracing Advanced Computer Graphics 31 July 2013 SS 

Effects Needed for Realistic Rendering 

§  Remember one of the local lighting models from CG1? 

§  All local lighting models fail to render one of the following 
effects: 

§  (Soft) Shadows (Halbschatten) 

§  Reflection on glossy surfaces, e.g., mirrors (Reflexionen) 

§  Refraction, e.g., on water or glass surfaces (Brechung) 

§  Indirect lighting (sometimes in the form of "color bleeding") 

§  Diffraction (Beugung) 

§ … 
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The Rendering Equation 

§  Goal: photorealistic rendering 

§  The "solution": the rendering equation            [Kajiya, Siggraph 1986] 
 
 

 
Li = the "amount" of light incident on x from direction ωi  
Le = the "amount" of light emitted (i.e., "produced") from x into direction ωr  
Lr = the "amount" of light reflected from x into direction ωr  
ρ  = function of the reflection coefficient (= BRDF, see CG1) 
Ω = hemisphere around the normal  

Li Lr θi 

x 

ρ 

Lr (x ,⇤r ) = Le(x ,⇤r ) +

�

�
⇥(x ,⇤r ,⇤i )Li (x ,⇤i ) cos(�i )d⇤i

ρ 
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Approximations to the Rendering Equation 

§  Solving the rendering equation is impossible! 

§  Observation: the rendering equation is a recursive function 

§  Consequently, a number of approximation methods have been 
developed that are based on the idea of following rays: 

§  Ray tracing [Whitted, Siggraph 1980, 
"An Improved Illumination Model  
for Shaded Display"] 

§  Radiosity [Goral et. al, Siggraph 1984,  
"Modeling the Interaction of Light  
between diffuse Surface"] 

§  Current state of the art: 

§  Ray-tracing, combined with photon tracing, 
combined with Monte Carlo methods 

Turner Whitted, 
Microsoft Research 
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The Simple "Whitted-style" Ray-Tracing 

§  Synthetic camera = viewpoint + image plane in world space 

1.  Shoot rays from camera through every pixel into scene (primary rays) 

2.  If the ray hits more than one object, then consider only the first hit 

3.  From there, shoot rays to all light sources (shadow feelers)  

4.  If a shadow feeler hits another obj → point is in shadow w.r.t. that light source.  
Otherwise, evaluate a lighting model (e.g., Phong [see CG1]) 

5.  If the hit obj is glossy, then shoot reflected rays into scene (secondary rays) → recursion 

6.  If the hit object is transparent, then shoot refracted ray → more recursion 
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§  Assumptions in the simple Whitted-style ray-tracing: 

§  Point light sources 

§ Many more ... 

§  Limitations: can model only .. 

§  Reflections, 

§  Refractions, 

§ Occlusions, 

§  Hard shadows 
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One of the First Ray-Traced Images 

Turner Whitted 1980 
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A Little Bit of Ray-Tracing Folklore 

§  The principle of ray-tracing is so easy that you can write a 
"complete" ray-tracer on the back of a business card: 

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{	
vec cen,color;double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9,	
.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,	
1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,	
1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A	
,B;{return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a*	
A.x;B.y+=a*A.y;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(	
vdot(A,A)),A,black);}struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s=	
sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+s->rad*s	
->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&u<tmin?best=s,u:	
tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;	
struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return	
amb;color=amb;eta=s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen	
)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l	
->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e	
,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*	
eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-sqrt	
(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd,	
color,vcomb(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32)	
U.x=yx%32-32/2,U.z=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255.,	
trace(3,black,vunit(U)),black),printf("%.0f %.0f %.0f\n",U);}/*minray!*/	

[Paul Heckbert, ca. 1994] (Also won the International Obfuscated C Code Contest) 
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The Ray Tree 

§  Basic idea of ray-tracing: construct ray paths from the light 
sources to the eye, but follow those paths "backwards"  

§  Leads (conceptually!) to a tree, the ray tree: 

E1 = primary ray   
Ri = reflected rays 
Ti = transmitted rays 
Si = shadow rays 
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§  Visualizing the ray tree can be very helpful for deubgging 

Incoming ray 
reflected ray 
shadow ray 
transmitted (refracted) ray 



G. Zachmann 11 Ray Tracing Advanced Computer Graphics 31 July 2013 SS 

Interactive Demo 

http://www.siggraph.org/education/materials/HyperGraph/raytrace/rt_java/raytrace.html  
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Digression 

§  The ancient explanation for our capability of seeing:  
"seeing rays" 
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Albrecht Dürer's "Ray Casting Machines"  [16th century] 
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Examples of Ray-Traced Images 
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Intermission: Giorgio Morandi 
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The "sphere flake" from the standard procedural databases (SPD) by Eric Haines 
[http://www.acm.org/tog/resources/SPD/ ]. 
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Fake or Real? 
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The Camera (Ideal Pin-Hole Camera) 

A 

O 

for ( i = 0; i < height; i ++ ) 
  for ( j = 0; j < width; j ++ ) 
    ray.from = A 
    t = (i/height – 0.5) * h 
    s = (j/width – 0.5)  * w 
    ray.at = O + s.x + t.y 
    trace( 0, ray, & color ); 
    putPixel( x, y, color ); 

near 

h/2 

θ 

The main loop of ray-tracers 

h

2
= near·tan ✓

2

O = A� near·z� w

2
x� h

2
y
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Probably the Oldest Depiction of a Pinhole Camera 

Von R. Gemma Frisius, 1545 
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The Camera Obscura 
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Other Strange Cameras 

§  With ray-tracing, it is easy to implement non-standard projections 

§  For instance: fish-eye lenses, projections on a hemi-sphere (= the 
dome in Omnimax theaters), panoramas  
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The Lighting Model 

§  We will use Phong (for sake of simplicity) 

§  The light emanating from a point on a surface: 
 
 
 
 
 
 
 

kd = reflection coefficient for diffuse reflection  
ks = reflection coefficient for specular reflection  
Ij = light coming in from j-th light source 
n = number of light sources 
 

§  Of course, we add a light source only, 
if it is visible! 

l 

v 

n l' 

Φ 

L
total

= L
Phong

+ . . . more terms (later)

L
Phong

=

nX

j=1

(kd cos�j + ks cos
p ⇥j)·Ij
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Stopping Criteria for the Recursion 

§  Each recursive algorithm needs a criterion for stopping: 

§  If the maximum recursion depth is reached (fail-safe criterion) 

§  If the contribution to a pixel's color is too small (decreases with depthn ) 

Recursion depth: 3 Recursion depth: 5 Recursion depth: 100 Scene overview 
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Secondary Rays 

§  Assumption: we found a hit for the 
primary ray with the scene 

§  Then the reflected ray is: 

n

d r

r =
�
(�d·n)·n� (�d)

�
·2 + (�d)

= d� 2(d·n)·n

with knk = 1



G. Zachmann 30 Ray Tracing Advanced Computer Graphics 31 July 2013 SS 

§  Additional term in the lighting model: 
 
 
 
Lr = reflected light coming in from direction r  
        (= perfect reflection) 
ks = material coefficient for specular reflection  
 

L
total

= L
Phong

+ ksLr + . . . more terms (later)
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The Refracted Ray (a.k.a. Transmitted Ray) 

§  Law of refraction [Snell, ca.1600] : 

§  Computation of the refracted ray: 

 

§  Typical refractive  
indices: 

Luft Wasser Glas Diamant 

1.0 1.33 1.5 - 1.7 2.4 

n1 sin �1 = n2 sin �2

t =
n1

n2
(d + n cos �1)� n cos �2

cos �1 = �dn

cos2 �2 = 1� n2
1

n2
2

�
1� (dn)2

⇥

n

d

t
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|n| = |b| = 1

t = cos �2 ·(�n) + sin �2 ·b
d = cos �1 ·(�n) + sin �1 ·b

b =
d + n·cos �1

sin �1

t = �n·cos �2 +
sin �2

sin �1
(d + n·cos �1)

sin �2

sin �1
=

n1

n2

cos �1 = n·(�d)

n

t

b

d

d

r

�1

�1
�2

cos �2 ausrechnen:

sin �2 =
n1

n2
sin �1

sin2 + cos2 = 1

cos2 �2 = 1� (
u1

u2
sin �1)

2

Derivation of the Equation on the Previous Slide 
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§  Total reflection occurs, whenever the following condition occurs:  

        if radicand < 0 , cos

2 ✓1  1� n22
n21
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§  The complete lighting model (for now): 
 
 
Lt = transmitted light coming in from direction t  
kt = material coefficient for refraction 

L
total

= L
Phong

+ ksLr + ktLt
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Refraction and the Lifeguard Problem 

§  Running is faster than swimming  

Beach 

Person  
in trouble 

Lifeguard 

Water 

Run 

Swim 
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The Effect of the Refractive Index 

n=1.0 n=1.1 n=1.2 n=1.3 

n=1.4 n=1.5 n=1.6 n=1.7 
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Which One is the "Correct" Normal? 

§  Food for thought: do the computations of the reflected and 
transmitted rays also work, if the normal of the surface is pointing 
into the "wrong" direction? 

§ Which direction is the wrong one anyway? 
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Glitch Pictures: Incorrect Refraction 

Source: ‪yiningkarlli ( http://igad2.nhtv.nl/ompf2 ) 
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Which Effect Can We Not (Quite) Simulate Correctly (Yet)? 
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The Fresnel Terms 

§  When moving from one medium to another, a specific part of the 
light is reflected, the rest is always refracted 

§  The reflection coefficient ρ  depends on the refractive indices of 
the involved materials, and on the angle of incidence: 

§  1-ρ = the amount of the transmitted light 

⇥⇥ =
n2 cos �1 � n1 cos �2

n2 cos �1 + n1 cos �2

⇥� =
n1 cos �1 � n2 cos �2

n2 cos �1 + n1 cos �2

⇥ =
1

2
·
�
⇥2
⇥ + ⇥2

�

⇥
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§  Example: 
§  Air (n = 1.0) to glass (n = 1.5), angle of incidence = perpendicular: 

§  I.e., when moving perpendicularly from air to glass, 4% of the light is 
reflected, the rest is refracted 

§  Approximation of the Fresnel terms [Schlick 1994]: 
 
 
 

  
where  ρ0 = Fresnel term for perpendicular angle of incidence, and  
θ = angle between ray and normal in the thinner medium  
      (i.e., the larger angle) 

�⇥ =
1.5� 1

1.5 + 1
=

1

5
�� =

1� 1.5

1.5 + 1
=

1

5
� =

1

2
· 2

25
= 4%

⇥(�) ⇥ ⇥0 + (1� ⇥0) (1� cos �)5

�0 =

�
n2 � 1

n2 + 1

⇥2
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Example for Refraction with Fresnel Terms 

n=1.0 n=1.1 n=1.2 n=1.3 

n=1.4 n=1.5 n=1.6 n=1.7 

buggy 
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Attenuation (Dämpfung) in Participating Media 

§  When light travels through a medium, its intensity is attenuated, 
depending on the length of its path through the medium 

§  The Lambert-Beer Law governs this attenuation: 
 

  
    where α = some material constant, and 
    s = the distance travelled in the medium 

I (s) = I0e
��s
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Dispersion 

§  In reality, the refractive index depends on the wavelength! 

§  This effect cannot be modelled any more with simple "RGB light"; 
this requires a spectral ray-tracer 
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Pink Floyd, The Dark Side of the Moon 
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Example with Fresnel Terms and Dispersion 
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Intersection Computations Ray-Primitive 

§  Amount to the major part of the computation time 

§  Given: a set of objects (e.g., polygons, spheres, …) 
and a ray 

§  Wanted: the line parameter t  of the first  intersection point  
P = P(t)  with the scene 

P(t) = O + t ·d
d

t

O

P
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Intersection of Ray with Polygon 

§  Intersection of the ray (parametric) with the 
supporting plane of the polygon (implicit) → 
point 

§  Test whether this point is in the polygon: 
§  Takes place completely in the plane of the polygon 

§  3D point is in 3D polygon ⇔ 2D point is in 2D poly 

§  Project point & polygon: 
§  Along the normal: too expensive 

§ Orthogonal onto coord plane: simply omit one of the 
3 coords of all points involved 

§  Test whether 2D point is in 2D polygon: 
§  Count the number of intersection  

between (another, 2D) ray and  
the 2D polygon 



G. Zachmann 49 Ray Tracing Advanced Computer Graphics 31 July 2013 SS 

Interludium: the Complete Ray-Tracing-Routine 

traceRay( ray ): 
  hit = intersect( ray ) 
  if no hit: 
    return no color 
  reflected_ray = reflect( ray, hit ) 
  reflected_color = traceRay( reflected_ray ) 
  refracted_ray = refract( ray, hit ) 
  refracted_color = traceRay( refracted_ray ) 
  for each lightsource[i]: 
    shadow_ray = compShadowRay( hit, lightsource[i] ) 
    if intersect(shadow_ray): 
      light_color[i] = 0 
  overall_color = shade( hit, 
                         reflected_color, 
                         refracted_color, 
                         light_color ) 
  return overall_color 

hit is a data structure (a 
struct or an instance of a  
class) that contains all infos 
about the intersectin between  
the ray and the scene, e.g., 
the intersection point, a  
pointer to the object, normal, … 

The intersect function can 
be optimized considerably 
compared to traceRay; 
in addition, only intersection 
points before the light 
source are relevant. 

Evaluates the lighting model of the hit object. 


