Bremen

Advanced Computer Graphics
Ray-Tracing

G. Zachmann
University of Bremen, Germany
cgvr.informatik.uni-bremen.de

eeeeee

Effects Needed for Realistic Rendering

= Remember one of the local lighting models from CG1?

= All local lighting models fail to render one of the following
effects:

= (Soft) Shadows (Halbschatten)

Reflection on glossy surfaces, e.g., mirrors (Reflexionen)

Refraction, e.qg., on water or glass surfaces (Brechung)

Indirect lighting (sometimes in the form of "color bleeding")

Diffraction (Beugung)

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing

eeeeee

The Rendering Equation

= Goal: photorealistic rendering

= The "solution": the rendering equation [Kajiya, Siggraph 1986]

L.(x,w,) = Le(x,w,) + /Q,o(x,w,, wi)Li(x,w;) cos(6;)dw;

Li = the "amount" of light incident on x from direction wj
Lo = the "amount" of light emitted (i.e., "produced") from x into direction wy,
L, =the "amount" of light reflected from x into direction w,

o = function of the reflection coefficient (= BRDF, see CG1)
2 = hemisphere around the normal

G. Zachmann Advanced Computer Graphics July 2013 Ray Tracing

eeeeee

U Approximations to the Rendering Equation

= Solving the rendering equation is impossible!
= Observation: the rendering equation is a recursive function

= Consequently, a number of approximation methods have been
developed that are based on the idea of following rays:
= Ray tracing [Whitted, Siggraph 1980,
"An Improved lllumination Model
for Shaded Display"]

= Radiosity [Goral et. al, Siggraph 1984,
"Modeling the Interaction of Light
between diffuse Surface"]

= Current state of the art: S

Turner Whitted,
= Ray-tracing, combined with photon tracing, Microsoft Research

combined with Monte Carlo methods

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing

U The Simple "Whitted-style" Ray-Tracing

Synthetic camera = viewpoint + image plane in world space
. Shoot rays from camera through every pixel into scene (primary rays)
If the ray hits more than one object, then consider only the first hit

From there, shoot rays to all light sources (shadow feelers)

2 woN

If a shadow feeler hits another obj — pointis in shadow w.r.t. that light source.
Otherwise, evaluate a lighting model (e.g., Phong [see CG1])

O

. If the hit obj is glossy, then shoot reflected rays into scene (secondary rays) — recursion

6. If the hit object is transparent, then shoot refracted ray — more recursion

Advanced Computer Graphics Ray Tracing

eeeee

= Assumptions in the simple Whitted-style ray-tracing:
= Point light sources
= Many more ...

= Limitations: can model only ..
= Reflections,
= Refractions,
= Occlusions,

= Hard shadows

G. Zachmann Advanced Computer Graphics SS July 2013

Ray Tracing

eeeee

One of the First Ray-Traced Images

G. Zachmann Advanced Computer Graphics

SS

Turner Whitted 1980

July 2013

Ray Tracing

Bremen

U A Little Bit of Ray-Tracing Folklore g

e

= The principle of ray-tracing is so easy that you can write a
"complete" ray-tracer on the back of a business card:

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{
vec cen,color;double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9,
.05,.2,.8,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,
1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.06,1.5,-3.,-3.,12.,.8,1.,
1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A
,B;{return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a*
A.x;B.y+=a*A.y;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(1l./sqrt(
vdot(A,A)),A,black);}struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s=
sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+s->rad*s
->rad,u=u>07sqrt(u):1e3l,u=b-u>le-7?b-u:b+u,tmin=u>=1e-7&&u<tmin?best=s,u:
tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;
struct sphere*s,*1;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen
)));if(d<@)N=vcomb(-1.,N,black),eta=1/eta,d= -d;l=sph+5;while(1-->sph)if((e=1
->k1*vdot(N,U=vunit(vcomb(-1.,P,1->cen))))>0&&intersect(P,U)==1)color=vcomb(e
,L->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*
eta*(1-d*d);return vcomb(s->kt,e>07?trace(level,P,vcomb(eta,D,vcomb(eta*d-sqrt
(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd,
color,vcomb(s->kl,U,black))));Imain(Q{printf("%d %d\n",32,32);while(yx<32*32)
U.x=yx%32-32/2,U.z=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261) ,U=vcomb(255.,
trace(3,black,vunit(U)),black),printf("%.0f %.0f %.0f\n",U);}/*minray!*/

(Also won the International Obfuscated C Code Contest) [Paul Heckbert, ca. 1994]

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 8

Y

The Ray Tree

= Basic idea of ray-tracing: construct ray paths from the light
sources to the eye, but follow those paths "backwards"

= |Leads (conceptually!) to a tree, the ray tree:
P y y

E1 = primary ray

Ri = reflected rays

Ti = transmitted rays
Si = shadow rays

G. Zachmann Advanced Computer Graphics SS July 2013

Ray Tracing

= Visualizing the ray tree can be very helpful for deubgging

reflected ray
shadow ray
transmitted (refracted) ray

G. Zachmann Advanced Computer Graphics SS July 2013

Ray Tracing

7. cc =

e e e]

VR =

10

Bremen

Y

Interactive Demo

SCREEN

MAIN ALGORITHM

For each pixel
Form primary ray "
Find closest intafsectior
If intersect something

7" ShadefBDEFPTH+ 1, final)

"

,,f Put firmal shade in pixel

EYE

SHADE (DEPTH, RTNSHADE)

Form shadow ray
Find inter
If reflective

Form reflect ray

Find closest intersect

Shade (DEPTH+ 1, REFLSHADE)
If transparent

Form refract ray

Find closest intersect

Shade (DEPTH+ 1, REFRSHADE)

_ompute rtnshade

(STEP) | AUTO) (CLEAR)

http://www.siggraph.org/education/materials/HyperGraph/raytrace/rt java/raytrace.html

G. Zachmann Advanced Computer Graphics SS

July 2013

Ray Tracing

.

<n

0

11

e

eeeee

Digression e

= The ancient explanation for our capability of seeing:
"seeing rays"

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 12

Bremen

Albrecht Durer's "Ray Casting Machines"

The movable threads
(probably made of silk) were
stretched across the frame at
right angles to each other

G. Zachmann

Advanced Computer Graphics

PULLEY SYSTEM
At the wall, the string was attached
to a weight, which acted as a pulley
(see engraving), keeping the string
taut as it passed through the needle
eye and frame to the pointer at its
other end.

Pulley weight Pointer

The foreshortened lute,
plotted point by point

”l'll‘\'ﬂ[
shutter

Wooden frame

SS July 2013 Ray Tracing

[16th centurﬁlf

]

¥
¢ CcG
v

13

e
[*1
u>

o

Bremen

2
o= o

14

Ray Tracing

July 2013

SS

Advanced Computer Graphics

G. Zachmann

Bremen »J.
q
W Examples of Ray-Traced Images gl
[
Q.
S
2
<
2
=
o
ol | <
5] |
L,
G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 15

Bremen

G. Zachmann

Advanced Computer Graphics

SS

July 2013

Ray Tracing

..

<n

oo

16

e

Bremen

Y Intermission: Giorgio Morandi

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 17

Bremen

Y

The "sphere flake" from the standard procedural databases (SPD) by Eric Haines
[http://www.acm.org/tog/resources/SPD/].

G. Zachmann Advanced Computer Graphics SS July 2013

Ray Tracing

18

Bremen

Y

G. Zachmann

Advanced Computer Graphics

SS

July 2013

Ray Tracing

.

cG
VR

19

G. Zachmann

Advanced Computer Graphics

SS

July 2013

Ray Tracing

- =
TR E

20

Bremen

W Fake or Real?

800 Fake or Foto? - The Challenge
+ |2 file:///Users/zach/Documents/Lehre/CG1/demos/raytracing_fake_or_real/challenge.html# ¢ | (Q Google

Autodesk

The Challenge

Take a look at the ten images below. Some of them are photographs of real objects or scenes, others are created by computer graphics (CG) artists. Test your
ability to tell which among the array of images are real, and which are CG. If you want a closer look, click the image to see a larger view of the picture. Once
you've decided what's what, click either CG or REAL to begin the tally of your score. Work through each of the ten images. When you've finished, you'll be
prompted to get your score.

G Real

G Real

.

G. Zachmann Advanced Computer Graphics SS July 2013

..

Ray Tracing 21

Bremen

W The Camera (Ideal Pin-Hole Camera)

N

™ ﬁ:: near'tan-g

Y 2 2

R h
™S O=A-— 22
R near-z 2x >

The main loop of ray-tracers

t

S

ray.at

for (i = 0; i < height; i ++)
for (jJ = 0; jJ < width; j ++)
ray.from = A

(i/height - 0.5) * h
(j/width - 0.5)

* w
O+ sx + ty

G. Zachmann

trace(0, ray, & color);
putPixel (x, y, color);
Advanced Computer Graphics SS July 2013

y

Ray Tracing

", cc "

VR

22

eeeeee

Probably the Oldest Depiction of a Pinhole Camera

_So& afe/' s 04:7"0 C/ 15k = -- e
15 deder m:e 24]dmm‘r? ~
Wiy, --J—(; o”a’j s —— — — /T ‘3
: o e -‘;5;7 =
= 7
’\Lf}%g
SN
SRS
N /A A B B O\ 4
Von R. Gemma Frisius, 1545
G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing

23

Rt

[*1
u>

W The Camera Obscura

Bremen

IR G IR b

il

i

g

24

Ray Tracing

July 2013

SS

Advanced Computer Graphics

G. Zachmann

eeeeee

U Other Strange Cameras S

= With ray-tracing, it is easy to implement non-standard projections

= For instance: fish-eye lenses, projections on a hemi-sphere (= the

dome in Omnimax theaters), panoramas

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 25

Bremen

Y

G. Zachmann

Advanced Computer Graphics

SS

July 2013

Ray Tracing

cG
VR

26

eeeeee

U The Lighting Model i

= We will use Phong (for sake of simplicity)

= The light emanating from a point on a surface:

Liotal = Lphong + - .. more terms (later)
LPhong — Z (kd COS ¢j -+ ks cos” @J)]J
j=1

kq = reflection coefficient for diffuse reflection

ks = reflection coefficient for specular reflection ® n L
Ij = light coming in from j-th light source !
n = number of light sources Y \@ v V

= Of course, we add a light source only,

if it is visible!

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 27

U Stopping Criteria for the Recursion

= Each recursive algorithm needs a criterion for stopping:
= |f the maximum recursion depth is reached (fail-safe criterion)

= If the contribution to a pixel's color is too small (decreases with depth”)

Scene overview Recursion depth: 3 Recursion depth: 5 Recursion depth: 100

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 28

eeeeee

U Secondary Rays

= Assumption: we found a hit for the \
primary ray with the scene D
= Then the reflected ray is:

r=((-dn)n—(-d))2+ (~d)
=d—2(d-n)-n

with ||| = 1

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing

..
<n

29

1)

eeeeee

= Additional term in the lighting model:

Liotal = Lphong + ksL, + ... more terms (later)

L, = reflected light coming in from direction r
(= perfect reflection)
ks = material coefficient for specular reflection

G. Zachmann Advanced Computer Graphics SS July 2013

Ray Tracing

7 cG
VR

30

Y The Refracted Ray (a.k.a. Transmitted Ray) S

n
= Law of refraction [Snell, ca.1600] : D |

ni sin @1 = noysin 65

= Computation of the refracted ray:

6o\ t
m
t=—(d+ ncosf;) — ncosb;
ny
cosf; = —dn
”% 2
cos’f, =1 — — (1 — (dn)?)
n;
- TypiCal refractive Luft Wasser Glas Diamant
indices: 1.0 1.33 15-17 2.4

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 31

eeeeee

Y Derivation of the Equation on the Previous Slide

n| = [b[=1
t =cosbtr-(—n) +sinbty-b
d =cosf;-(—n) +sinf;-b

~ d+n-cosb
N sin 61

b

sin 65

t =—n-cosf, + (d + n-cosf,)

sin (91

cos 6> ausrechnen:
ny

sin 0> = — sin 64
np
sin2—|—cos2 =1
uy .
cos® B, =1 — (— sin f1)?
up

G. Zachmann Advanced Computer Graphics SS July 2013

Ray Tracing

32

eeeee

{208

<n

e

oo

= Total reflection occurs, whenever the following condition occurs:

.
if radicand <0 < cos?f; <1 — il

2
ny

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 33

eeeeee

= The complete lighting model (for now):
Ltotal — LPhong - ker - ktLt

L; = transmitted light coming in from direction ¢
k= material coefficient for refraction

G. Zachmann Advanced Computer Graphics SS July 2013

Ray Tracing

34

U Refraction and the Lifequard Problem §§

= Running is faster than swimming

Lifeguard

Person e
in trouble :

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 35

eeeeee @ §
V) The Effect of the Refractive Index e

-8 0

n=1.0 n=1.1 n=1.2 n=1.3
n=1.4 | n=1.5 n=1.6 | n=1.7 |

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 36

eeeeee

W Which One is the "Correct" Normal?

= Food for thought: do the computations of the reflected and
transmitted rays also work, if the normal of the surface is pointing
into the "wrong" direction?

= Which direction is the wrong one anyway?

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 37

Bremen

>

V) Glitch Pictures: Incorrect Refraction

_
7] Karl and Peter's GPU Path Tracer =eeess] (T kariandpetersGPUpath Tracer =y
W = —

Source: yiningkarlli (http://igad2.nhtv.nl/ompf2)

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 38

eeeeee

W Which Effect Can We Not (Quite) Simulate Correctly (Yet)?

G. Zachmann Advanced Computer Graphics SS July 2013

Ray Tracing

..

<n

0

39

e

eeeeee

W The Fresnel Terms

= When moving from one medium to another, a specific part of the
light is reflected, the rest is always refracted

= The reflection coefficient 0 depends on the refractive indices of
the involved materials, and on the angle of incidence:

no cos 6y — ny cos -

10 p—
“ n, cos 1 + nq cos -

ny cos 61 — no cos -

n, cos 61 + ny cos 6-

1 7o 5
ﬂ:a(||‘|‘,0¢)

= 1-p = the amount of the transmitted light

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 40

eeeeee

= Example:

= Air (n =1.0) to glass (n = 1.5), angle of incidence = perpendicular:

_15-1 1 - 1-15 1 12
Al=1s+1 5 M7 15+1 5 772725 "7

= |.e., when moving perpendicularly from air to glass, 4% of the light is
reflected, the rest is refracted

= Approximation of the Fresnel terms [Schlick 1994]:

p(6) =~ po + (1 = po) (1 — cos6)’

B n2—1 2
Po = o+ 1

where p, = Fresnel term for perpendicular angle of incidence, and
0 = angle between ray and normal in the thinner medium
(i.e., the larger angle)

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing

eeeeee

Example for Refraction with Fresnel Terms 3

z e e e

n=1.0 n=1.1 n=1.2 n=1.3
A P — J——— — S
n=1.4 n=1.5 n=1.6 n=1.7

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 42

Y Attenuation (Dampfung) in Participating Media

= When light travels through a medium, its intensity is attenuated,
depending on the length of its path through the medium

= The Lambert-Beer Law governs this attenuation:

I(s) = lpe™o*

where a = some material constant, and -- -
a C‘, a Il
Iy

s = the distance travelled in the medium

g

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 43

| | St
Y Dispersion

= |n reality, the refractive index depends on the wavelength!

= This effect cannot be modelled any more with simple "RGB light";
this requires a spectral ray-tracer ”

n
17
16— Caco,L -\
“\ Rt
AN P
N[N TH=—FF===
C‘F) .‘\. \.‘J — e e 000

5 Logles [

N
145 500 7000

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 44

Bremen

Y

.

<n

e

0

Pink Floyd, The Dark Side of the Moon

"An Allegorical Monument to Sir Isaac Newton"

Giovanni Battista Pittoni, 1725,

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 45

eeeee

G. Zachmann

Advanced Computer Graphics

SS

July 2013

Ray Tracing

..

. CG X

VR

46

eeeeee

U Intersection Computations Ray-Primitive

= Amount to the major part of the computation time

= Given: a set of objects (e.g., polygons, spheres, ...)
and a ray

P(t)=0+t-d /

= Wanted: the line parameter t of the first intersection point
P = P(t) with the scene

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 47

eeeeee

Y Intersection of Ray with Polygon

= |ntersection of the ray (parametric) with the
supporting plane of the polygon (implicit) —
point

= Test whether this point is in the polygon:

= Takes place completely in the plane of the polygon

= 3D pointisin 3D polygon < 2D pointis in 2D poly /
= Project point & polygon:

= Along the normal: too expensive

= Orthogonal onto coord plane: simply omit one of the «
3 coords of all points involved /
= Test whether 2D pointis in 2D polygon:
= Count the number of intersection @ R\ /Q\

between (another, 2D) ray and jef
the 2D polygon

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing 48

eeeee

Interludium: the Complete Ray-Tracing-Routine

traceRay(ray): hit is a data structure (a
struct or an instance of a

hit = intersect(ray) class) that contains all infos

if no hit: about the intersectin between

the ray and the scene, e.g.,

HEETET O COLE the intersection point, a

reflected ray = reflect(ray, hit) pointer to the object, normal, |...

reflected color = traceRay(reflected ray)
refracted ray = refract(ray, hit)
refracted color = traceRay(refracted ray)
for each lightsource[i]:
shadow ray = compShadowRay(hit, lightsource[i])
if intersect(shadow ray): .
light color[i] = 0
overall color = shade(hit,

compared to traceRay;

reflected color, pointsbefore the light
refracted color, source are relevant.
light color)

return overall color Eyaluates the lighting model of the hit object.

The intersect function can
be optimized considerably

in addition, only intersectiq

DN

G. Zachmann Advanced Computer Graphics SS July 2013 Ray Tracing

..

<n

0

49

e

