
Advanced Computer Graphics
Ray-Tracing

G. Zachmann
University of Bremen, Germany
cgvr.informatik.uni-bremen.de

G. Zachmann 2 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Effects Needed for Realistic Rendering

§  Remember one of the local lighting models from CG1?

§  All local lighting models fail to render one of the following
effects:

§  (Soft) Shadows (Halbschatten)

§  Reflection on glossy surfaces, e.g., mirrors (Reflexionen)

§  Refraction, e.g., on water or glass surfaces (Brechung)

§  Indirect lighting (sometimes in the form of "color bleeding")

§  Diffraction (Beugung)

§ …

G. Zachmann 3 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

The Rendering Equation

§  Goal: photorealistic rendering

§  The "solution": the rendering equation [Kajiya, Siggraph 1986]

Li = the "amount" of light incident on x from direction ωi
Le = the "amount" of light emitted (i.e., "produced") from x into direction ωr
Lr = the "amount" of light reflected from x into direction ωr
ρ = function of the reflection coefficient (= BRDF, see CG1)
Ω = hemisphere around the normal

Li Lr θi

x

ρ

Lr (x ,⇤r) = Le(x ,⇤r) +

�

�
⇥(x ,⇤r ,⇤i)Li (x ,⇤i) cos(�i)d⇤i

ρ

G. Zachmann 4 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Approximations to the Rendering Equation

§  Solving the rendering equation is impossible!

§  Observation: the rendering equation is a recursive function

§  Consequently, a number of approximation methods have been
developed that are based on the idea of following rays:

§  Ray tracing [Whitted, Siggraph 1980,
"An Improved Illumination Model
for Shaded Display"]

§  Radiosity [Goral et. al, Siggraph 1984,
"Modeling the Interaction of Light
between diffuse Surface"]

§  Current state of the art:

§  Ray-tracing, combined with photon tracing,
combined with Monte Carlo methods

Turner Whitted,
Microsoft Research

G. Zachmann 5 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

The Simple "Whitted-style" Ray-Tracing

§  Synthetic camera = viewpoint + image plane in world space

1.  Shoot rays from camera through every pixel into scene (primary rays)

2.  If the ray hits more than one object, then consider only the first hit

3.  From there, shoot rays to all light sources (shadow feelers)

4.  If a shadow feeler hits another obj → point is in shadow w.r.t. that light source.
Otherwise, evaluate a lighting model (e.g., Phong [see CG1])

5.  If the hit obj is glossy, then shoot reflected rays into scene (secondary rays) → recursion

6.  If the hit object is transparent, then shoot refracted ray → more recursion

G. Zachmann 6 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

§  Assumptions in the simple Whitted-style ray-tracing:

§  Point light sources

§ Many more ...

§  Limitations: can model only ..

§  Reflections,

§  Refractions,

§ Occlusions,

§  Hard shadows

G. Zachmann 7 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

One of the First Ray-Traced Images

Turner Whitted 1980

G. Zachmann 8 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

A Little Bit of Ray-Tracing Folklore

§  The principle of ray-tracing is so easy that you can write a
"complete" ray-tracer on the back of a business card:

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{	
vec cen,color;double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9,	
.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,	
1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,	
1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A	
,B;{return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a*	
A.x;B.y+=a*A.y;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(
vdot(A,A)),A,black);}struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s=	
sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+s->rad*s	
->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&u<tmin?best=s,u:	
tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;	
struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return	
amb;color=amb;eta=s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen	
)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l	
->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e	
,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*	
eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-sqrt	
(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd,	
color,vcomb(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32)	
U.x=yx%32-32/2,U.z=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255.,	
trace(3,black,vunit(U)),black),printf("%.0f %.0f %.0f\n",U);}/*minray!*/	

[Paul Heckbert, ca. 1994] (Also won the International Obfuscated C Code Contest)

G. Zachmann 9 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

The Ray Tree

§  Basic idea of ray-tracing: construct ray paths from the light
sources to the eye, but follow those paths "backwards"

§  Leads (conceptually!) to a tree, the ray tree:

E1 = primary ray
Ri = reflected rays
Ti = transmitted rays
Si = shadow rays

G. Zachmann 10 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

§  Visualizing the ray tree can be very helpful for deubgging

Incoming ray
reflected ray
shadow ray
transmitted (refracted) ray

G. Zachmann 11 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Interactive Demo

http://www.siggraph.org/education/materials/HyperGraph/raytrace/rt_java/raytrace.html

G. Zachmann 12 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Digression

§  The ancient explanation for our capability of seeing:
"seeing rays"

G. Zachmann 13 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Albrecht Dürer's "Ray Casting Machines" [16th century]

G. Zachmann 14 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

G. Zachmann 15 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Examples of Ray-Traced Images

Je
ns

en
, L

ig
ht

sc
ap

e

G. Zachmann 16 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

G. Zachmann 17 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Intermission: Giorgio Morandi

G. Zachmann 18 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

The "sphere flake" from the standard procedural databases (SPD) by Eric Haines
[http://www.acm.org/tog/resources/SPD/].

G. Zachmann 19 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

G. Zachmann 20 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

G. Zachmann 21 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Fake or Real?

G. Zachmann 22 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

The Camera (Ideal Pin-Hole Camera)

A

O

for (i = 0; i < height; i ++)
 for (j = 0; j < width; j ++)
 ray.from = A
 t = (i/height – 0.5) * h
 s = (j/width – 0.5) * w
 ray.at = O + s.x + t.y
 trace(0, ray, & color);
 putPixel(x, y, color);

near

h/2

θ

The main loop of ray-tracers

h

2
= near·tan ✓

2

O = A� near·z� w

2
x� h

2
y

G. Zachmann 23 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Probably the Oldest Depiction of a Pinhole Camera

Von R. Gemma Frisius, 1545

G. Zachmann 24 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

The Camera Obscura

G. Zachmann 25 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Other Strange Cameras

§  With ray-tracing, it is easy to implement non-standard projections

§  For instance: fish-eye lenses, projections on a hemi-sphere (= the
dome in Omnimax theaters), panoramas

G. Zachmann 26 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

G. Zachmann 27 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

The Lighting Model

§  We will use Phong (for sake of simplicity)

§  The light emanating from a point on a surface:

kd = reflection coefficient for diffuse reflection
ks = reflection coefficient for specular reflection
Ij = light coming in from j-th light source
n = number of light sources

§  Of course, we add a light source only,
if it is visible!

l

v

n l'

Φ

L
total

= L
Phong

+ . . . more terms (later)

L
Phong

=

nX

j=1

(kd cos�j + ks cos
p ⇥j)·Ij

G. Zachmann 28 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Stopping Criteria for the Recursion

§  Each recursive algorithm needs a criterion for stopping:

§  If the maximum recursion depth is reached (fail-safe criterion)

§  If the contribution to a pixel's color is too small (decreases with depthn)

Recursion depth: 3 Recursion depth: 5 Recursion depth: 100 Scene overview

G. Zachmann 29 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Secondary Rays

§  Assumption: we found a hit for the
primary ray with the scene

§  Then the reflected ray is:

n

d r

r =
�
(�d·n)·n� (�d)

�
·2 + (�d)

= d� 2(d·n)·n

with knk = 1

G. Zachmann 30 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

§  Additional term in the lighting model:

Lr = reflected light coming in from direction r
 (= perfect reflection)
ks = material coefficient for specular reflection

L
total

= L
Phong

+ ksLr + . . . more terms (later)

G. Zachmann 31 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

The Refracted Ray (a.k.a. Transmitted Ray)

§  Law of refraction [Snell, ca.1600] :

§  Computation of the refracted ray:

§  Typical refractive
indices:

Luft Wasser Glas Diamant

1.0 1.33 1.5 - 1.7 2.4

n1 sin �1 = n2 sin �2

t =
n1

n2
(d + n cos �1)� n cos �2

cos �1 = �dn

cos2 �2 = 1� n2
1

n2
2

�
1� (dn)2

⇥

n

d

t

G. Zachmann 32 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

|n| = |b| = 1

t = cos �2 ·(�n) + sin �2 ·b
d = cos �1 ·(�n) + sin �1 ·b

b =
d + n·cos �1

sin �1

t = �n·cos �2 +
sin �2

sin �1
(d + n·cos �1)

sin �2

sin �1
=

n1

n2

cos �1 = n·(�d)

n

t

b

d

d

r

�1

�1
�2

cos �2 ausrechnen:

sin �2 =
n1

n2
sin �1

sin2 + cos2 = 1

cos2 �2 = 1� (
u1

u2
sin �1)

2

Derivation of the Equation on the Previous Slide

G. Zachmann 33 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

§  Total reflection occurs, whenever the following condition occurs:

 if radicand < 0 , cos

2 ✓1  1� n22
n21

G. Zachmann 34 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

§  The complete lighting model (for now):

Lt = transmitted light coming in from direction t
kt = material coefficient for refraction

L
total

= L
Phong

+ ksLr + ktLt

G. Zachmann 35 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Refraction and the Lifeguard Problem

§  Running is faster than swimming

Beach

Person
in trouble

Lifeguard

Water

Run

Swim

G. Zachmann 36 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

The Effect of the Refractive Index

n=1.0 n=1.1 n=1.2 n=1.3

n=1.4 n=1.5 n=1.6 n=1.7

G. Zachmann 37 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Which One is the "Correct" Normal?

§  Food for thought: do the computations of the reflected and
transmitted rays also work, if the normal of the surface is pointing
into the "wrong" direction?

§ Which direction is the wrong one anyway?

G. Zachmann 38 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Glitch Pictures: Incorrect Refraction

Source: ‪yiningkarlli (http://igad2.nhtv.nl/ompf2)

G. Zachmann 39 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Which Effect Can We Not (Quite) Simulate Correctly (Yet)?

G. Zachmann 40 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

The Fresnel Terms

§  When moving from one medium to another, a specific part of the
light is reflected, the rest is always refracted

§  The reflection coefficient ρ depends on the refractive indices of
the involved materials, and on the angle of incidence:

§  1-ρ = the amount of the transmitted light

⇥⇥ =
n2 cos �1 � n1 cos �2

n2 cos �1 + n1 cos �2

⇥� =
n1 cos �1 � n2 cos �2

n2 cos �1 + n1 cos �2

⇥ =
1

2
·
�
⇥2
⇥ + ⇥2

�

⇥

G. Zachmann 41 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

§  Example:
§  Air (n = 1.0) to glass (n = 1.5), angle of incidence = perpendicular:

§  I.e., when moving perpendicularly from air to glass, 4% of the light is
reflected, the rest is refracted

§  Approximation of the Fresnel terms [Schlick 1994]:

where ρ0 = Fresnel term for perpendicular angle of incidence, and
θ = angle between ray and normal in the thinner medium
 (i.e., the larger angle)

�⇥ =
1.5� 1

1.5 + 1
=

1

5
�� =

1� 1.5

1.5 + 1
=

1

5
� =

1

2
· 2

25
= 4%

⇥(�) ⇥ ⇥0 + (1� ⇥0) (1� cos �)5

�0 =

�
n2 � 1

n2 + 1

⇥2

G. Zachmann 42 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Example for Refraction with Fresnel Terms

n=1.0 n=1.1 n=1.2 n=1.3

n=1.4 n=1.5 n=1.6 n=1.7

buggy

G. Zachmann 43 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Attenuation (Dämpfung) in Participating Media

§  When light travels through a medium, its intensity is attenuated,
depending on the length of its path through the medium

§  The Lambert-Beer Law governs this attenuation:

 where α = some material constant, and
 s = the distance travelled in the medium

I (s) = I0e
��s

G. Zachmann 44 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Dispersion

§  In reality, the refractive index depends on the wavelength!

§  This effect cannot be modelled any more with simple "RGB light";
this requires a spectral ray-tracer

G. Zachmann 45 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

G
io

va
nn

i B
at

tis
ta

 P
itt

on
i,

 1
72

5,

"A
n

Al
le

go
ric

al
 M

on
um

en
t t

o
Si

r I
sa

ac
 N

ew
to

n"

Pink Floyd, The Dark Side of the Moon

G. Zachmann 46 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Example with Fresnel Terms and Dispersion

G. Zachmann 47 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Intersection Computations Ray-Primitive

§  Amount to the major part of the computation time

§  Given: a set of objects (e.g., polygons, spheres, …)
and a ray

§  Wanted: the line parameter t of the first intersection point
P = P(t) with the scene

P(t) = O + t ·d
d

t

O

P

G. Zachmann 48 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Intersection of Ray with Polygon

§  Intersection of the ray (parametric) with the
supporting plane of the polygon (implicit) →
point

§  Test whether this point is in the polygon:
§  Takes place completely in the plane of the polygon

§  3D point is in 3D polygon ⇔ 2D point is in 2D poly

§  Project point & polygon:
§  Along the normal: too expensive

§ Orthogonal onto coord plane: simply omit one of the
3 coords of all points involved

§  Test whether 2D point is in 2D polygon:
§  Count the number of intersection

between (another, 2D) ray and
the 2D polygon

G. Zachmann 49 Ray Tracing Advanced Computer Graphics 31 July 2013 SS

Interludium: the Complete Ray-Tracing-Routine

traceRay(ray):
 hit = intersect(ray)
 if no hit:
 return no color
 reflected_ray = reflect(ray, hit)
 reflected_color = traceRay(reflected_ray)
 refracted_ray = refract(ray, hit)
 refracted_color = traceRay(refracted_ray)
 for each lightsource[i]:
 shadow_ray = compShadowRay(hit, lightsource[i])
 if intersect(shadow_ray):
 light_color[i] = 0
 overall_color = shade(hit,
 reflected_color,
 refracted_color,
 light_color)
 return overall_color

hit is a data structure (a
struct or an instance of a
class) that contains all infos
about the intersectin between
the ray and the scene, e.g.,
the intersection point, a
pointer to the object, normal, …

The intersect function can
be optimized considerably
compared to traceRay;
in addition, only intersection
points before the light
source are relevant.

Evaluates the lighting model of the hit object.

